
Magnetodynamics
This document describes version 1.0 of Magnetodynamics. It is intended for both begin-

ners and advanced users of Unity, and for both novices and experts in physics. If a section
seems too pedantic, skim through it. If something doesn’t make sense, skip over it.

Magnetodynamics is available for sale on the Unity Asset Store, and you can play with
some projects built from it at http://www.coffeeshopphysics.com/magnetodynamics.
Unity (http://www.unity3d.com) is a software framework for developing 3-D computer
games. I use it to make interactive physics demos.

The first part of this document introduces the concepts and the tools by walking you
through two of the demos. The second part describes each tool on its own, starting with
a quick reference and ending with a tutorial demo that highlights the tool. The third part
is about scripting— most of your interaction with Magnetodynamics is likely to be with
prefabricated GameObjects, but there’s a programming interface for the few things that
need to be coded. At the end is a list of troubleshooting tips.

There’s always a danger in writing long documentation— it might give the impression
that the project is more complicated than it really is. I have erred on the side of trying to
provide enough information, even if it looks unnecessarily foreboding.
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1 Introduction: what this package does

1.1 Fast and pretty accurate physics

Magnetodynamics adds realistic magnetic fields and forces to your Unity project. It is a
collection of GameObjects and associated C# scripts that magnetize your existing objects
so that they can apply magnetic and electric forces, respond to fields, draw field lines, and
simulate particle beams and plasmas. It is not a full calculation of Maxwell’s Equations, the
fundamental laws of electricity and magnetism, but an approximation to quickly compute
their most visible effects with enough accuracy to “feel right” to the user.

Magnetic field calculations for science and engineering divide space or material bodies
into many small volumes called finite elements. Each contributes to the electric and magnetic
fields that fill the universe. The force on each element depends on the field from all the other
elements, so the time required to compute the forces on everything scales with the number
of elements squared. For accuracy, some calculations use so many elements that they require
months of supercomputer time.

Figure 1: A not-quite infinitesimal dipole.

That’s out of the question for a game en-
gine, which must be fast. The Magnetody-
namics package reduces the general descrip-
tion of magnetic sources to a few well-placed
infinitesimal dipoles. An infinitesimal dipole
is a magnetic field source that is equivalent
to an infinitesimally small loop of circulat-
ing electric current. Figure 1 shows a dipole:
its electric current is represented by a white
cylindrical surface with red arrows and the
magnetic field lines it generates are green.
It can be described by a 3-D vector (shown
in magenta: the arrow points toward the
dipole’s magnetic north). Now imagine shrinking the white cylinder down to a point of
zero size while retaining the same amount of electric current. The magnetic field, especially
far from the source, doesn’t change much. If you embed a few infinitesimal dipoles in the
things that should generate the strongest magnetic fields, such as bar magnets, cranes, MRIs,
and antimatter confinement systems, the magnetic forces will be accurate enough to create
the feeling that these are real magnets. The field calculations are mathematically exact,
though the sources are unrealistically small.

Any magnetic field configuration can be described as an assembly of infinitesimal dipoles
(finite element calculations often put an infinitesimal dipole in each of their tiny volumes), but
the purpose of this package is to minimize the number of calculations. For field configurations
that would be awkward to describe with dipoles, Magnetodynamics allows you to write down
the equation describing the field— all torques and forces would then be applied correctly. In
this documentation, I call fields implemented this way “external fields,” and include some
of the most important special cases.
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Perhaps our most common experience of magnetism is when permanent magnets attract
metal objects. This is also one of the most complicated phenomena and the most difficult to
simulate. Magnetic fields generated by orbits of electrons and their quantum mechanical spin
in the permanent magnet induce similar, though disordered, domains in the metal to line up
with the direction of the applied field. The metal becomes a magnet, too, and it happens to
be pointing in the right direction to be attracted by the permanent magnet (and maybe draw
a few more metal objects, like a train of paperclips). An important aspect of magnetization
is that it could happen anywhere in the metal and is usually unequal in different parts
of the metal because it depends very strongly on distance (not an inverse-square law, but
an inverse-seventh power law!). Magnetodynamics includes tools for magnetizing materials,
though they have some limitations that are described in detail.

The opposite of magnetization and magnetic attraction is the anti-magnetization of a
superconductor. Though we don’t experience this much in our daily lives, it is a cool effect
and might find a home in some video game. The simulation of magnets levitating over
superconductors is more faithful to real physics than the simulation of magnetization, but it
is limited to only a few shapes of superconducting material (large plane and small sphere).

If you have the Vectrosity package1, you can unlock a feature in Magnetodynamics that
draws magnetic and electric field lines. Field lines follow the direction of a magnetic field
through space and either form a closed loop or stretch out to infinity. They provide an
intuitive way to visualize fields, either for development or as part of the game. Vectrosity
does the actual drawing, while Magnetodynamics computes the shape of the curve.

Though Magnetodynamics focuses on the most common effects in macroscopic mag-
netism, it also simulates static electricity and plasmas of charged particles. The attraction
and repulsion of static electricity is like a simple version of magnetic forces: instead of vector-
valued magnetic dipoles, electric sources are single-valued charges (positive or negative but
with no direction), and while magnetic fields and their derivatives apply torques and forces
on dipoles, electric fields apply only forces on charges in proportion to the strength of the
field.

Unity’s ParticleSystem makes it possible to visualize low-density plasmas, which are
fluids of charged particles. We simply replace the forces the ParticleSystem would apply
to its Particles with forces derived from the electric and magnetic fields. The plasma (or
“ionized gas”) accelerates in the direction of electric fields and spirals around magnetic field
lines.

In real life, changing electric fields creates magnetic fields (Ampère’s law) and changing
magnetic fields creates electric fields (Faraday’s law). While this is a deep and impor-
tant concept, it doesn’t often lead to visible effects (just nifty things like radio and light).
Magnetodynamics does not simulate it explicitly. I may write about certain magnetic field
configurations being produced by “electric currents,” but those currents are in my mind,
not the simulation. In this package, the electric field and the magnetic field are simply two
independent fields.

1Vectrosity is a third-party package, also available on the Asset Store: http://starscenesoftware.com/
vectrosity.html
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The most difficult part of the physics simulation is handling collisions. Unity’s internal
physics engine does a good job with low-speed collisions, but when objects move fast enough
for two Colliders to overlap or even skip over each other in a single time-step, the simulation
becomes visibly unrealistic. Magnetic forces tax this part of the simulation because they can
produce large accelerations over short distances. In a typical project, you will adjust the
field strengths until they are large enough to produce an effect at an appropriate distance
scale. However, magnetic forces scale rapidly with distance: the force between two dipoles
is an inverse fourth-power law and the force between a dipole and a magnetized object is
an inverse seventh-power law. The magnetic strength needed to just barely budge an object
across the room is painful up close.

Much of the internal work in Magnetodynamics is for handling collisions more gracefully.
Magnets turn off their attraction when their Colliders overlap and the magnet-magnetizable
interaction is simulated by varying the spring strength in a SpringJoint. (SpringJoints al-
ready handle collisions rather well.) One of the tutorial projects, Flying Wrenches, shows
the various approaches used to handle an extreme case.

In case any of my physics friends complain about the name of this package, the word
“magnetodynamics” is meant to emphasize this focus on the human-scale magnetic part of
electromagnetism. I chose it because it is not often used in scientific literature, and when it
is, its meaning varies. Also, it contains “neat-o!”

1.2 Package contents

The Magnetodynamics package installs two top-level directories in your project: Magneto-
dynamics and ExampleScenes. Only Magnetodynamics is needed for the package to work:
ExampleScenes provides the demos discussed in this document. You may want to mine them
for examples of how to implement special cases, like horseshoe magnets, particle beams, static
clingy sheets, well-spaced field lines, etc.

Within the Magnetodynamics folder, ObjectsToPlaceInYourScene contains prefabricated
objects to embed in your GameObjects. Most of them are invisible; the few that have
a visible MeshRenderer are translucent to help you position them in your Scene. You’ll
probably want to turn off the MeshRenderer when it’s in the right place. The subfolder,
ScriptsThatMakeThemWork, contains scripts that have already been attached to the pre-

fabricated objects. You probably won’t need to go into this folder, though you can.
One reason you might need to go into ScriptsThatMakeThemWork is to let Magneto-

dynamics know that you have the Vectrosity package and enable field lines. Instructions are
provided in the reference section on FieldLine.

The second folder in Magnetodynamics, ScriptsToEnhanceExistingObjects, are script
Components that you attach to your object. These don’t have an associated prefab because
no positions or orientations need to be aligned in the Scene view.

The ExampleScenes folder has a Scene to demonstrate each tool. They’re not organized
very well and they borrow each other’s assets. If you want to run any one of them, install
all of them. But again, if you only want to use the Magnetodynamics package and not look
at any of the examples, you don’t have to install the ExampleScenes folder.
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Figure 2: The TabletopExperiments Scene contains a little of almost everything: magnetic
dipoles (two bars and a horseshoe), a dipole with a fixed position (compass), magnetizable
materials (paperclips, ball bearings, and little refrigerator), an external field (solenoid of
wires wrapped around a toilet paper roll), and plasma (particle accelerator, hand-held).

1.3 Walk-through of magnetic simulations

Open and run the TabletopExperiments Scene (in the ExampleScenes folder) or play it
through the Unity web interface at http://www.coffeeshopphysics.com/magnetodynamics
(shown in Fig. 2). This scene was designed to give an overview of (almost) all the tools.
While the demo is running, you can move most of the objects with the mouse. Play around
with them and see what they do.

If you have Vectrosity and you want to enable the field lines (green lines in Fig. 2), open
Magnetodynamics/ObjectsToPlaceInYourScene/ ScriptsThatMakeThemWork/FieldLineScript
and remove the ‘//’ before ‘#define I HAVE VECTROSITY’. Then save and re-run.

This Scene has a total of seven infinitesimal dipoles (MagneticDipole prefabs) embedded
in four Rigidbodies. By contrast, a full finite element simulation could have thousands to
billions of elements. Each bar magnet is modeled with two dipoles, one near each end, both
pointing in the same direction. The horseshoe magnet also has two, pointing in opposite
directions. The compass needle has one MagneticDipole with a fixed position— it is only
allowed to rotate. For more accuracy, they could be modeled with a larger number of weaker
dipoles, approaching the granularity of a finite element simulation. However, the simple field
shapes that this demo requires wouldn’t justify the additional calculations.
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Figure 3: Anatomy of a horseshoe magnet.
Note the directions of the blue arrows.

In Unity’s Scene and Hierarchy views,
you can see how MagneticDipoles are at-
tached to objects. Figure 3 is an example
showing the horseshoe magnet. The horse-
shoe is a regular GameObject— it has a
MeshRenderer to be visible, a Rigidbody
to apply forces and torques, and a Col-
lider to identify collisions. The Magnet-
icDipoles are new objects nested within it
(they are indented in the Hierarchy view).
Since the positions of nested objects are
glued to their parent’s position, Magneto-
dynamics only has to generate fields and ap-
ply forces to the MagneticDipoles and it will
look like the fields and forces come from the
visible horseshoe.

The paperclips and ball bearings on the
right of Fig. 2 are examples of magnetiz-
able materials. They don’t contain nested
objects, just a MagnetizableMaterial script.
It has no positions to fine-tune in the Scene
view.

Drag a magnet toward one of the paperclips. When it is close enough, the force between
them will overcome the table’s friction and the two will snap together very quickly. This is
because the force between them scales as distance to the inverse seventh power. In principle,
that applies equally throughout the volume of the paperclip’s material, but the distance
dependence is so steep that one point on the surface of the paperclip will contribute much
more than the rest. Therefore, we only compute the force due to one point, the point that
is closest to the dipole, and effectively magnetize the whole volume of its Collider with an
inexpensive algorithm.

The (very small!) refrigerator at the right of Fig. 2 contains a MagnetizableMaterial with
a fixed position. You can drag magnets onto it and they’ll stick.

On the left of Fig. 2 is a toilet paper roll wrapped in a coil of wire. Running an electric
current through the wire would create a solenoid, an electromagnet whose field is nearly
constant inside the tube and splays out of both openings. This field is simulated with an
ExternalFieldSolenoid object. This object is a translucent cylinder that you can position as
needed in the Scene view (see Fig. 4). Scaling and rotating the cylinder changes its magnetic
field in the appropriate ways, so you can arrange this abstract cylinder to line up with your
visual representation of the electromagnet’s wires. Once aligned, you’ll probably want to
turn off the ExternalFieldSolenoid’s MeshRenderer so that it becomes invisible.

If you have Vectrosity and the FieldLines are enabled, you should see five green field lines
reaching out of the solenoid’s mouth like a creature of the deep. These FieldLine objects
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Figure 4: ExternalFieldSolenoid in the Scene and Hierarchy views.

are also prefabs, dropped into the Scene from the Magnetodynamics package. They mark
the starting points of curves that follow the flow of magnetic field vectors from south to
north. You can set their positions with the mouse, but their orientations are unimportant
(the magnetic field defines the directions, even at the beginning of the curve).

Finally, in the back of Fig. 2, there’s a hand-held particle accelerator (wish I had one).
It emits a beam of charged particles, a Unity ParticleSystem whose Particles have been
modified to obey the Lorentz force law. If you drag the accelerator to the magnets, or the
magnets to the accelerator, you should see the beam bend.

You can add a plasma like this using the prefabricated PlasmaStream object, and then
adjust the ParticleStream parameters as desired. (The parameters related to forces won’t
work because Magnetodynamics hijacks the kinematics of all the Particles). Alternatively,
you can plasmafy an existing ParticleStream by attaching the PlasmaIonizedGas script to
it.

Last and most importantly, the scene contains an ElectromagneticFieldController. The
position of this GameObject means nothing, but it must be present for any magnetic or
electric fields to work. It acts as a central point in the communication of field information
between the magnetic and charged objects.

8



1.4 Walk-through of static electricity simulations

Figure 5: The VanDeGraaffExample Scene demonstrates the simulation of static electricity.
A flag (InteractiveCloth), balloons, and a ball bearing are attracted to a Van de Graaff
generator. There’s also a beam of particles that can actually orbit the generator.

Though Magnetodynamics is primarily focused on magnetic fields and forces, it can sim-
ulate static electricity as well. To see some examples of this, open the VanDeGraaffExample
Scene and run it. You can move the ball bearing (bottom right) and the particle accelerator
as before, and you can turn the Van de Graff generator on and off by clicking its red button.

StaticCharge objects are embedded within GameObjects with Rigidbodies and Colliders,
just as the MagneticDipoles were in the previous example. Each balloon has one StaticCha-
rge, as does the ball bearing and the dome of the Van de Graaff generator. The on/off switch
modifies the strength parameter of the Van de Graaff’s charge through a script.

Although it would be more realistic to model these electric field sources on the surfaces of
the balloons and the metal balls, a charge in the center is mathematically equivalent. That
is, it produces the same electric field outside the sphere, but inside the sphere the field is
wrong because it ought to be zero. Since nothing in the game can get inside the balloons to
discover our fakery, we’re safe.

The static clingy flag uses Unity’s InteractiveCloth feature, which simulates a waving,
pliable mesh. I added static charges to the cloth with twelve low-mass Rigidbody Col-
liders, each containing a static charge, at regular intervals. They are not nested in the
hierarchy— the InteractiveCloth has an attachedColliders parameter in which we can set
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Figure 6: StaticCharges in Colliders attached to the InteractiveCloth of the flag.

a twoWayInteraction link between the cloth and each of the charges. Figure 6 shows how
they are arranged.

If you drag the particle accelerator close to the base of the Van de Graaff generator while
it’s on, you can get the particles to orbit its dome in a full ellipse that follows Kepler’s laws
like a belt of asteroids. Cool!
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2 Scene-building Reference

2.1 ElectromagneticFieldController

2.1.1 Reference

Every Scene that uses Magnetodynamics must contain an ElectromagneticFieldController
object. It does not matter where it is located and it has no visible representation: it has
only one Component, the ElectromagneticFieldControllerScript. You can change its name
to something other than ElectromagneticFieldController, but then you would have to
explicitly link all magnetic and charged objects to it by hand. If you leave the name as it is,
they will find it automatically.

Most of what this object/script does is not important to the end-user. The one option
that you may need to change is collisionLayer (see Discussion below).

Once you add it to your Scene, you can safely ignore it, with the possible exception of
the collisionLayer parameter. Here is a description of all of the ElectromagneticFieldCon-
trollerScript parameters.

Name Type Default Description
ambientElectricField Vector3 Vector3.zero constant space-filling electric field
ambientMagneticField Vector3 Vector3.zero constant space-filling magnetic field
colliderPoof float 1.0 factor to multiply the size of Magnet-

icDipole trigger-colliders to better han-
dle collisions (see Discussion below)

dampenLanding float 0.5 exponential decay of velocity during
MagneticDipole collision

dampenLandingSteps int 10 number of steps in velocity decay
collisionLayer int 9 layer reserved for MagneticDipole

trigger-colliders (change this if you use
layer 9 for something else!)

maxMagnetized-

ForceOverMass

float 20.0 maximum force-divided-by-mass to ap-
ply to magnetizable materials

2.1.2 Discussion

The ambientElectricField and ambientMagneticField parameters duplicate the function
of the ExternalFieldConstant object with onlyWithinBox = false.

The colliderPoof, dampenLanding, and dampenLandingSteps parameters all control
the way MagneticDipoles collide. When magnets move quickly, they can temporarily over-
lap each other, which can bring the MagneticDipoles into close contact, which can create
enormous forces. Sometimes, this leads to a magnet flying away faster than you can blink,
and sometimes they just roll around on the ground indecently.

To manage this, each Rigidbody containing MagneticDipoles has two Colliders: the one
you give it when you declare it as a Rigidbody, and one generated at run-time, managed by
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Figure 7: Isolating the magnets’ trigger-collision layer for better performance.

ElectromagneticFieldController. The magnets’ Collider is a trigger (isTrigger = true), so
it does not generate contact forces, but it does inform the ElectromagneticFieldController
that two magnetic bodies are unphysically overlapping and should be treated carefully. Mag-
netic forces between MagneticDipoles in these Rigidbodies are turned off and their relative
velocities are smoothly brought to a stop before letting Unity apply the contact forces to
make the magnets recoil.

Usually, this trigger-collider has the same size as the original Collider because colliderPoof,
a factor which multiplies the size of the trigger-collider, is 1.0 by default. Sometimes, though,
it is necessary to stop magnetic forces early, which can be done by poofing the trigger-colliders
out to 1.02 (2%) or 1.05 (5%). The TabletopExperiments example has colliderPoof =

1.02. Since some magnets may be much larger than others, MagneticDipoles have an
overrideColliderPoof that can be used to set trigger-collider sizes independently.

The smooth decay of the relative velocities is controlled by dampenLanding, which is
a factor multiplied to the velocity dampingLandingSteps times. The trigger-colliders are
assigned to the layer specified by collisionLayer.

If you are not using this layer for anything else, you can reduce the computation load by
turning off interactions with non-magnets in the Layer Collision Matrix. As shown in Fig. 7,
select the Edit → Project Settings → Physics menu and find the Layer Collision Matrix
in the Inspector. I have named my layer 9 “CollisionLayer” so that it will show up in this
matrix: you can do that in Edit → Project Settings → Tags. By unselecting interactions
between CollisionLayer and everything else, its triggers will only be called when magnet
touches magnet, not at other times. The script only acts on collisions between magnets, so
it will function properly without this step. This step can only improve the performance.

The maxMagnetizedForceOverMass parameter solves a similar problem for the force
between MagneticDipoles and MagnetizableMaterials. The active point on a Magnetizable-
Material is always on the surface of its Collider, so they would have to be poofed too much
to use the same method. Instead, I put a maximum cut-off on the force per unit mass that it
can apply. By Newton’s second law (F = ma), that’s a maximum cut-off on the acceleration
(you don’t want things to move too fast on the screen), except that it would not be correct
to call it a “maximumAcceleration” unless it were applied to the sum of all forces. The
physicist in me could not abide such sloppy nomenclature.
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2.2 MagneticDipole

2.2.1 Reference

To make your GameObject feel magnetic forces and generate magnetic fields, add one or
more MagneticDipoles to it. The MagneticDipoles must be nested within a larger GameOb-
ject, as in Fig. 3, and that GameObject must have a Collider (BoxCollider, SphereCollider,
CapsuleCollider, or MeshCollider) and a Rigidbody.

A MagneticDipole is a singularity of magnetic field: at the point in space occupied by the
dipole, the magnetic field is infinitely strong. As you approach the dipole, it grows without
bound. Therefore, make sure to bury the dipoles deep within the Collider like a nerve in a
tooth, so that two MagneticDipoles can never get very close to one another.

You can set the position and direction of the MagneticDipole in the Scene view. The
blue arrow points north or south (the other two are not relevant).

Name Type Default Description
electromagnetic-

FieldController

Game-

Object

null pointer to the scene’s Electromagnet-
icFieldController; only needed if you
changed its name

strength float 300.0 strength of the magnetic dipole in
Ampere-square meters (A·m2); can be
negative

applyTorqueOnly bool false if true, only apply torques to the Mag-
neticDipole, not forces

overrideColliderPoof float 1.0 if non-negative, overrides the value
of ElectromagneticFieldController’s
colliderPoof parameter for this
MagneticDipole only

2.2.2 Discussion

The unit used for magnetic field is Tesla (abbreviated as T, equivalent to Newton-second
per Coulomb-meter) and so the unit for a magnetic dipole is Ampere-square meters (A·m2,
equivalent to Coulomb-square meters per second). Typical values are hundreds of A·m2,
but don’t be afraid to change the strength by factors of ten to find the right scale for your
configuration. If the strength is positive, the MagneticDipole’s blue arrow points north, if
negative, it points south.

A dipole’s contribution to the magnetic field at a point is

~B~m(~r) =
µ0

4π

1

r3

[
3(~m · r̂)r̂ − ~m

]
(1)

where µ0 is the permeability of free space (4π × 10−7 N/A2), ~r is the displacement between
the dipole and the point in question, r is its magnitude (distance) and r̂ is a normalized
vector in the same direction, and ~m is the dipole vector. The strength parameter is the
magnitude of ~m.
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The torque on a dipole due to total field ~B at a point is

~N = ~m× ~B (2)

and the force on a dipole due to the same field is

~F = ∇(~m · ~B) = ~m× (∇× ~B) + (~m · ∇) ~B (3)

and by (~m · ∇) ~B, I mean mx
d

dx
~B +my

d

dy
~B +mz

d

dz
~B. (4)

The torque is a product of the dipole strength vector with the value of the magnetic field, so
it depends on dipole separation as 1/r3. Like tides in gravitation, the force on a magnetic
dipole is a differential force, and the application of the derivative (∇) steepens its distance
dependence to 1/r4. All derivatives in Magnetodynamics are analytic, not numerical, which
improves the numerical stability.

Since the force calculation is a bit more expensive, you can opt to skip it by setting
applyTorqueOnly to true. This is useful for dipoles with constrained positions, such as
compass needles, that would be negligibly affected by the force anyway. (I’m assuming that
the compass is heavy enough that it isn’t dragged toward the field.)

When calculating the torque and force on a particular MagneticDipole, all field sources
except the MagneticDipoles in the same Rigidbody are included. The reason we exclude
the torque/force of a dipole on itself is because it is infinite in classical physics. (This “self-
interaction” is an interesting topic in quantum field theory!) The reason we exclude the
torque/force of other dipoles in the same rigid body is because all they would do is create
stresses within that body. If the rigid body is perfectly rigid (it doesn’t bend or burst apart
due to the competing forces within itself), then it must be compensating those forces with
the strength of its internal structure. Hence, the internal forces can’t lead to any visible
effects, so they aren’t even applied.

When two Rigidbodies containing MagneticDipoles come into contact, the force between
them is turned off and their velocities are slowed to a stop. This avoids the unrealistically
strong magnetic force and/or recoil that would occur if the dipoles get too close to each
other. See the previous section on ElectromagneticFieldController, which has some settings
to control this collision-handling at a global level.

Magnetic forces are applied using ForceMode.Impulse, rather than ForceMode.Force.
The latter applies forces in a gradual way across several time-steps, but this means that
they would become out-of-date as the dipoles move. The simulation calls the Rigidbody’s
AddForceAtPosition(), rather than AddForce(), so an off-center MagneticDipole can cre-
ate a torque in addition to that of Eqn. 2.
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2.2.3 Tutorial project: Ball Magnets

Figure 8: Dragging a MagneticDipole into
BallMagnet-1.

To get some practice setting up Magnet-
icDipoles, open the BallMagnetsTutorial
scene and run it. It contains a ball with
an “N” painted on one side and “S” on the
other. Nothing in the scene has been mag-
netized yet.

From the ObjectsToPlaceInYourScene
folder, drag a MagneticDipole into the ball
magnet. It is important for the Magnet-
icDipole to be nested within BallMagnet-1,
as in Fig. 8 (and also Fig. 3). Make sure that
it is centered in the ball.

Figure 9: Rotating the MagneticDipole so
that it is aligned with the “N” and “S.”

Next, switch to an overhead view (click
on the Y axis in the Scene view) and rotate
the MagneticDipole so that it is aligned with
the graphical “N” and “S” on the surface of
the ball (Fig. 9). Check it from a few other
views to be sure that the MagneticDipole is
in the center of the ball.

Drag an ElectromagneticFieldController
into the scene so that the MagneticDipole
will work. (Without the controller, the MagneticDipole will raise an exception at run-time.)
Make many copies of BallMagnet-1 and make sure they’re in different places on the table.
Run it again.

The ball magnets will try to group themselves in ways that minimize their total energy

Figure 10: Ball magnets searching for a minimum-energy state. This ring is not a global
minimum; it collapses rather easily.
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(Fig. 10). They form all sorts of interesting structures because they not only want to be
close together, they also want to be aligned. To keep them from oscillating for a long time
(dissipating energy too slowly), I’ve given them a lot of friction and angular drag.

Try selecting them all at once and uncheck useGravity in their Rigidbodies. The
minimum-energy configurations in zero gravity are different from the ones you get when
they’re confined to the table’s surface.

2.3 StaticCharge

2.3.1 Reference

To make your GameObject feel electric forces and generate electric fields, add one or more
StaticCharges to it. The StaticCharges must be nested within a larger GameObject and
that GameObject must have a Collider (BoxCollider, SphereCollider, CapsuleCollider, or
MeshCollider) and a Rigidbody.

A StaticCharge is the electric equivalent of a MagneticDipole. Electricity is a bit simpler
than magnetism: an electric charge has no direction, so it doesn’t matter what the StaticCha-
rge’s orientation is. The distance dependence of the force is also less steep (inverse-square,
rather than inverse-fourth power). Though StaticCharges are singularities of electric field,
it is less important to bury them within Colliders than it is for MagneticDipoles, because of
the less steep distance dependence.

You can position StaticCharges in the Scene view, but the direction of its coordinate axes
(the three arrows) is irrelevant.

Name Type Default Description
electromagnetic-

FieldController

Game-

Object

null pointer to the scene’s Electromagnet-
icFieldController; only needed if you
changed its name

strength float 10−8 strength of the static charge in
Coulombs

overrideColliderPoof float -1.0 if non-negative, overrides the value
of ElectromagneticFieldController’s
colliderPoof parameter for this
StaticCharge only

2.3.2 Discussion

The unit used for electric field is Volt per meter (abbreviated V/m) and so the unit for
charge is a Coulomb (C). Typical values range from 10−8 C to 10−6 C, so don’t be afraid to
change the strength by factors of ten to find the right scale for your configuration. If you
want two charges to attract each other, be sure to make one positive and the other negative.

A static charge’s contribution to the electric field at a point is

~Eq(~r) =
1

4πε0

q

r2
(5)
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where ε0 is the permittivity of free space (8.85418782× 10−12 F/m or Farads per meter), ~r
is the displacement between the charge and the point in question, r is its magnitude, and q
is the strength of the charge (the strength parameter).

An electric field does not produce torques on static charges. The force on a charge due
to total field ~E is simply

~F = q ~E. (6)

When calculating the force on a particular StaticCharge, all field sources except other
StaticCharges in the same Rigidbody are included. StaticCharges also use Rigidbody’s
ForceMode.Impulse and AddForceAtPosition() for the same reasons as MagneticDipoles.

2.3.3 Tutorial project: Sun and Earth

Since the forces on electric charges and gravitating masses both have an inverse-square
distance dependence, we can use StaticCharges to simulate planetary motion. Open the
SunAndEarthTutorial Scene. It contains two spheres, both of which are Rigidbodies without
“gravity” (Unity’s simulation of a constant downward force). When you run the scene, the
Earth will shoot off into the distance because it has a simple script giving it an initial velocity.
We’d like the Sun and the Earth to attract each other so that they go into orbit.

Just as you did with MagneticDipoles, drag a StaticCharge into the Hierarchy view such
that it is a child of the Sun and make sure that it is positioned in the exact center of the
ball. Drag in another StaticCharge and make this one a child of the Earth. By default both
have a charge of 10−8 C, which would make them slightly repulsive. To attract, they need to
have opposite charges, though it doesn’t matter which is negative. By trial and error, I’ve
also found that the charges need to be stronger than the default to produce a nice orbit.
(“Nice” means fast enough to see.) Set the Sun’s charge to −5 × 10−5 C and the Earth’s
charge to 5× 10−7 C. Notice that these choices are in proportion to their Rigidbody masses:
only 100 to 1 in this ridiculous toy. For gravity, the strength of attraction (due to mass) is
always proportional to the amount of inertia (mass).

Before you can run it, you need to drag an ElectromagneticFieldController into the Scene.
If you don’t, you’ll get error messages and no electric forces.

Figure 11: A nice orbit.

Now the Sun and the Earth should or-
bit each other nicely. I say “orbiting each
other” because neither is completely station-
ary (a fact that is used to find extrasolar
planets). If you select the Sun while the sim-
ulation is running, you’ll see the position of
its Transform wiggling a little (look in the
Inspector). Try making their masses and
charges less extreme than the 100-to-1 ratio
and you should see the wiggle more clearly.
If their masses and charges are exactly the
same, they’ll both orbit a point halfway in
between.
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You can also change the Earth’s initial velocity (StartEarthMoving.js) to get more elliptic
orbits or even a hyperbolic orbit (it goes away and never comes back). You may get that
case by accident while tinkering with the masses and charges.

2.4 MagnetizableMaterial

2.4.1 Reference

To make an object such as a piece of metal susceptible to magnetic attraction, add the
MagnetizableMaterial script to it. Magnetodynamics simulates the force of attraction, but
not the induced magnetic fields in the object. The entire volume of its Collider is effectively
magnetized. The parameters of the script are:

Name Type Default Description
electromagnetic-

FieldController

Game-

Object

null pointer to the scene’s Electromagnet-
icFieldController; only needed if you
changed its name

strength float 10−14 χ/(1 + χ) times volume, where χ is
magnetic susceptibility

applyExternalForce bool false if true, apply forces due to external
fields

applyDipoleForce bool true if true, apply forces due to Magnet-
icDipoles

2.4.2 Discussion

Magnetization is the least realistic simulation in the Magnetodynamics package because the
physics of real magnetization is complex. The field of a magnetic dipole makes a small
volume of metal become a dipole on its own. The new dipole is

~M = χ ~H (7)

where ~H is a way of describing the magnetic field that includes all of the induction of
everything else in the universe. Just outside the surface of a magnetized material, ~H = ~B/µ0

(symbols already defined in previous sections). The capital ~M differs from the infinitesimal

dipole ~m in that it is dipole per unit volume. The units of ~M are A/m and the units of ~m
are A·m2.

The unitless factor χ describes how magnetizable the material is. Iron is more magne-
tizable than nickel, for instance. This χ isn’t even a constant for most metals, indeed, for
anything whose magnetization is strong enough to notice, χ depends on ~M and often the
history of past encounters with ~H. In some cases, χ isn’t a single number, but a tensor that
creates induced fields at odd angles relative to the external field.

This package doesn’t simulate any of that. It only calculates what the force of attraction
would be if a field had been induced at the point on the volume closest to the dipole (for
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all dipoles). The field from the dipole ~B~m, calculated from Eqn. 1, is assumed to induce a
dipole

~minduced = (strength) ~B/µ0, (8)

which ignores the distinction between ~minduced and ~Minduced. (The infinitesimal dipole ~minduced

represents a small patch of dipole density ~Minduced with some unspecified volume). Instead
of generating a field, this induced dipole is immediately used to calculate a force by Eqn. 3.

Since strength is a constant with no history dependence, the material is effectively a
paramagnet (like liquid oxygen), not a ferromagnet (like iron). Negative values of strength
are not allowed. Negative values would make magnets repel the object, an effect called
diamagnetism. Many materials that are not obviously magnetic, such as water, are very
weakly diamagnetic. (Search the Internet for pictures of frogs levitating in strong magnetic
fields.) For the special case of perfect diamagnetism, see the next section on superconductors.

The magnetic field of a dipole depends on distance as an inverse-cube law, and the
force on an induced dipole depends as an inverse-fourth power law. Since the dipole must
be induced before it can be attracted, the total force between a permanent dipole and its
induced dipole is a product of the two: an inverse-seventh power law. This steep distance
dependence causes problems when a permanent dipole and an induced dipole collide. Unity
applies contact forces to try to oppose the attraction and keep the two Colliders from passing
through each other, but both the magnetic force and the contact force are usually very large.
A competition between the two either results in the objects rocketing away from each other
or tumbling on the ground in a suggestive manner.

Unity handles collisions between Rigidbodies connected by a SpringJoint rather well, so
the force between MagneticDipoles and MagnetizableMaterial is implemented by creating
SpringJoints at run-time. A spring produces a force following Hook’s law,

~F (~r) = −k~r (9)

where k is a positive spring constant (SpringJoint.spring). Magnetodynamics dynam-
ically adjusts k so that it is always equal to the magnetic force divided by displacement
(|~F |/|~r|). For each MagneticDipole-MagnetizableMaterial pair, two SpringJoints are cre-
ated: one applies the force on the MagnetizableMaterial due to the MagneticDipole and the
other applies the force on the MagneticDipole due to the MagnetizableMaterial. (Newton’s
third law has to be enforced by hand!) SpringJoints in Unity cannot have negative spring
constants, so that’s why negative strength is not allowed.

External fields can also apply a force on MagnetizableMaterials, and this simulation is
more realistic. The force is calculated as above, except that the source is the external field,
rather than an infinitesimal dipole. Instead of calculating the force at a single point on the
surface of the Collider, the force is calculated at a random position within the Collider, using
uniformly random numbers generated by the rejection method to get the shape right. The
force is applied gradually using ForceMode.Force, rather than ForceMode.Impulse. Aver-
aged over many time-steps, this produces the right overall force on the MagnetizableMaterial
by smoothed Monte Carlo integration. No SpringJoints are involved.
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Forces from infinitesimal dipoles and external fields can be applied or not applied sep-
arately using the applyDipoleForce and applyExternalForce parameters. In future ver-
sions of Magnetodynamics, the two techniques will be unified using a technique similar to
the current external field approach.

2.4.3 Tutorial project: Flying Wrenches

To demonstrate the difficulties involved in implementing magnetized materials, I’ve set up
an extreme situation. Open the WrenchesTutorial Scene. A negligent physicist left a box
of wrenches a little too close to the supermagnet, and soon they’ll be flying all over the
place. The Scene is already set up with an ElectromagneticFieldController and a magnet
that you can turn on (but not off) by clicking on it while the game is running. The magnet is
represented by a strong MagneticDipole and also a strong ExternalFieldSolenoid. However,
the wrenches are not yet magnetizable, so turning on the magnet does nothing.

Drag a MagnetizableMaterial script into all seven wrenches, one at a time. (You can’t
do this all at once.) Now select them all and set the strength to 10−6. Run the sim-
ulation and click on the magnet to turn it on. Since applyDipoleForce is true and
applyExternalForce is false, only the MagneticDipole applies any force on the wrenches.
When the magnetic field gets strong enough, the wrenches slide off their shelves and bounce
off the supermagnet like popcorn. Not exactly the right effect.

In fact, they wouldn’t bounce at all if I hadn’t reinforced the supermagnet with additional
Colliders. To get a flat Collider surface on the cylinder, I replaced its default CapsuleCollider
with a MeshCollider (the CapsuleCollider has a rounded top). MeshColliders don’t seem to
be as good at detecting collisions as the simple shapes, which makes sense because it’s harder
to determine if you’re inside an arbitrary shape than a box or a sphere. (Some meshes might
not even be fully closed.) To make sure that the wrenches don’t go right through it, I added
an invisible BoxCollider named NoneShallPass. Even that is not enough if the magnet turns
on suddenly, instead of the eased transition implemented in TurnOnMagnet.cs.

In reality, a wrench flying across the room into a strong magnet probably wouldn’t bounce
at all— it would probably hit the wall, jangle briefly, and then stick to it, hard. The wrenches
in our simulation are hitting the wall with their hilts because this is an extreme point on the
surface and we only calculate the force at one point. I’m not sure why they’re bouncing: all
of the Physic materials involved have bounciness = 0.

Now switch to the ExternalFieldSolenoid instead of the MagneticDipole by selecting
all wrenches, turning off applyDipoleForce, and turning on applyExternalForce. As
discussed above, this is a more realistic simulation. However, when you run it, the wrenches
bounce even farther, and many of them don’t come back— they get stuck behind shelves
and things. This might even violate energy conservation because they bounce farther away
than they started.

In a situation like this, I would fake it. I’d keep the across-the-room attraction accurate by
using the ExternalFieldSolenoid with applyExternalForce = true, but when the wrenches
get close to actually hitting the wall, I’d replace the realistic simulation with a hack that
produces the desired effect.
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Figure 12: Wrenches flying dangerously through the air.

The Scene contains an object called StopAndStickTrigger, which is an invisible Cap-
suleCollider that extends in front of the supermagnet. Try turning on its MeshRenderer
briefly to see where it is. It has a script called StopAndStickScript that identifies when a
wrench is in danger of hitting the wall and immediately replaces its position with one that
is stuck to the wall, lengthwise. They fly through the air so fast that no one would notice
this teleportation— the discrete jump in position might not be much larger than the discrete
time-steps it’s already doing. To enable this script, set wrenches.size to 7 and drag each
of the wrench objects into the wrenches List. Now when you run it, it looks right (Fig. 12).

This solution is very specific to the wrenches in this example, but it should give a flavor
of the mixture of realism and cheating that is needed to get the right effect.

2.5 SuperconductorInfinitePlane and SuperconductorSmallSphere

2.5.1 Reference

SuperconductorInfinitePlane and SuperconductorSmallSphere are external field objects that
that correctly simulate magnetic field distributions outside the superconducting volume.
They only apply to two special case geometries: an infinite plane (the superconductor fills
the bottom half of the universe; its surface is an infinite plane) and a small sphere (exactly
simulates a spherical superconductor in a constant magnetic field and is a good approxima-
tion for an object that is small compared to magnetic field variation).
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Superconducting objects are prefabs with a translucent mesh to help you position them
in your Scene. The scripts that implement the superconductivity have only one parameter:

Name Type Default Description
electromagnetic-

FieldController

Game-

Object

null pointer to the scene’s Electromagnet-
icFieldController; only needed if you
changed its name

2.5.2 Discussion

One of the strange properties of superconductors is that they have zero magnetic field within
the superconducting volume. If you move a superconductor into a magnetic field, electric
currents will start flowing within the superconductor that exactly cancel the external field
(called the Meissner effect, it is Lens’s law with zero electrical resistance). To put it another
way, superconductors expel magnetic field lines: the field values smoothly descend to zero
as you approach the surface of the superconductor and are zero inside. This magnetic field
configuration makes magnets levitate above the superconductor’s surface.

Superconducting materials are conceptually similar to MagnetizableMaterials in that they
react to other magnetic fields, but their implementation is very different. Magnetizability is
a property that you can add to your existing objects with a script, while superconductors
are prefabricated objects with pre-defined geometries. MagnetizableMaterials do not cor-
rectly simulate the induced magnetic fields but are subject to the forces they would create;
superconducting objects simulate the expulsion of magnetic field lines but are not subject
to forces. (They are implemented as external fields, so they can apply forces on other things
and can be moved by hand, but they aren’t pushed by magnetic forces.)

SuperconductorInfinitePlane uses an image method to calculate its response to magnetic
fields. To guarantee that the total magnetic field is zero on the surface of the plane, it
duplicates the field on the other side of the plane, inverted like a mirror. If the field at
some point on the plane due to other sources is ~Bp, the superconductor adds − ~Bp and the
total field on the plane is zero. Close to the plane, it is close to zero, smoothly descending
as you approach the surface. Far above the plane, the fact that the original field has a
valid configuration (a solution to Maxwell’s Equations) implies that the superconductor’s
contribution is also a valid configuration and the total field is correct (due to the superposition
principle). To a magnetic dipole, the superconductor’s surface looks like a mirror: the mirror-
dipole does everything that the dipole does in such a way as to prevent either one of them
from passing through the looking glass.

The one thing that this method gets wrong is the field inside the superconductor. Both
sides of the infinite plane act like the outside of a superconductor. But if you put all of your
magnets on one side of the plane, everything will be right.

SuperconductorSmallSphere implements the field distribution of a uniformly magnetized
sphere with a magnetization to exactly cancel fields in its center. If it is immersed in a
constant magnetic field, it will expel field lines exactly around its spherical surface (with
zero field inside, unlike the SuperconductorInfinitePlane). If it is immersed in an an ap-
proximately constant magnetic field, it will approximately expel the field lines. In a wildly
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varying magnetic field, it will be wrong. That’s why it should be a small sphere— small
compared to magnetic field variations.

These two cases handle two extremes: one in which the superconductor is much larger
than all of your other magnets and another in which the superconductor is much smaller.
If you’re not too worried about accuracy, you could use the SuperconductorInfinitePlane for
large superconductors that aren’t exactly flat and you could use the SuperconductorSmall-
Sphere for small superconductors that aren’t exactly spherical.

In addition to not feeling magnetic forces, two physical effects are not modeled by this
simulation. In real superconductors, the magnetic fields are not exactly zero throughout
the superconducting material— fields get exponentially weaker as you get deeper into the
material (exponentials scale very quickly to very nearly zero). This is called the London
penetration depth. The other is the fact that superconductors can only expel fields up to a
certain point: when you reach the critical field strength, superconductivity breaks down just
as it would if you were to increase the temperature above the critical point.

2.5.3 Tutorial project: Hovering Magnet

Open the SuperconductorTutorial Scene and run it. It contains a bar magnet and an Elec-
tromagneticFieldController. If you have Vectrosity and have enabled FieldLines, the magnet
has six field lines attached to it to show how the field is shaped around the magnet. Below
the magnet is a large sample of BSCCO (“bisko”) in a bath of liquid nitrogen. But appar-
ently it has not reached its critical temperature yet because the magnet simply falls flat on
the surface.

Drag a SuperconductorInfinitePlane into the Scene and position it to correspond with the
BSCCO sample. When it is in position, turn off its MeshRenderer to make it invisible. Now
when you run the demo, the magnet hovers (Fig 13): as it falls toward the superconductor,

Figure 13: Magnet hovering over a superconductor.
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it moves its magnetic field closer to the superconductor and the superconductor responds
with its own fields to cancel everything on the surface. The magnet feels this response and
the derivative of the new magnetic field applies an upward force. At some distance that
depends on the strength of the magnet, this upward force balances gravity. The magnet
bounces around this equilibrium point until air friction brings it to rest.

I want to stress that this is a first principles derivation, not a cheat! If the FieldLines are
active, you’ll see that most of them bend away from the superconductor. For some orienta-
tions, one FieldLine points directly into the superconductor surface. This is a limitation of
using field lines to visualize fields: the field direction points into the surface, but the strength
of the field goes to zero. Field lines only show direction, not the strength of the field.

It is important to give the magnet a substantial amount of air friction to stabilize the
calculation. If the magnet is allowed to fall too far, it feels a very large force and bounces
away too fast, which causes it to fall farther the next time. Without any air resistance, I
got three or four good bounces before enough numerical error crept in to make it bounce
away wildly. I increased the Rigidbody drag and angularDrag until the simulation was just
barely stable: errors do not seem to grow, but the air friction is low enough to let it bounce
for about a minute before coming to rest at its equilibrium height. You can spin it with the
mouse to make it exciting again.

Figure 14: Expelling field lines.

If you have Vectrosity and FieldLines, the Supercon-
ductorTutorial2 shows the opposite configuration: a Su-
perconductorSmallSphere above a large magnet. Field-
Lines are required because that’s the only realistic part
of this second tutorial. SuperconductorSmallSphere does
not respond to magnetic forces, so it can’t be made to lev-
itate realistically as the bar magnet did. It is suspended in
the air by a simple SpringJoint. The value of this tutorial
is that the FieldLines wrap around the ball, showing the
Meissner effect very clearly (Fig 14).

The first time you run it, the FieldLines are straight
and pass through the ball because the SuperconductorS-
mallSphere hasn’t been added yet. Drag a Superconduc-
torSmallSphere into the SuperconductorBall object as you would with a MagneticDipole.
Make sure that the SuperconductorSmallSphere is nested within the SuperconductorBall in
the Hierarchy view (or else it won’t move with the ball). In principle, you should also make
sure that the radius is the right size by scaling it, but in this example, the two spheres are
already the same size. Now turn off its MeshRenderer and run the simulation. The field
lines wrap around the ball to avoid touching it. As the ball bounces around, the field lines
always get out of its way.

24



2.6 ExternalFieldConstant and ExternalFieldSoleniod

2.6.1 Reference

External fields give you more flexibility in creating arbitrary electric and magnetic field
configurations, but they are not pushed or pulled by electromagnetic forces. External field
objects have a translucent MeshCollider and a script to tell the ElectromagneticFieldCon-
troller how to calculate the desired field distribution. You can position the object in the
Scene view, rotating and scaling it as needed, and then disable the MeshCollider to make it
invisible (assuming you want to build the field-generator’s visual representation out of other
GameObjects). External fields can be moved and nested in GameObjects to make the field
mobile as well.

Two examples have been implemented, ExternalFieldConstant and ExternalFieldSolenoid.
An ExternalFieldTemplate is provided to help you write your own (see the Scripting Refer-
ence). These are the ExternalFieldConstant parameters:

Name Type Default Description
electromagnetic-

FieldController

Game-

Object

null pointer to the scene’s Electromagnet-
icFieldController; only needed if you
changed its name

electricField Vector3 Vector3.zero constant electric field value
magneticField Vector3 Vector3.zero constant magnetic field value
onlyWithinBox bool true if true, the ExternalFieldConstant

does not contribute outside its box
shape

And these are the ExternalFieldSolenoid parameters:

Name Type Default Description
electromagnetic-

FieldController

Game-

Object

null pointer to the scene’s Electromagnet-
icFieldController; only needed if you
changed its name

strength float 1.0 electric current in the solenoid loop in
Amperes, summed over all windings

2.6.2 Discussion

External fields could be represented as an assembly of many MagneticDipoles and Static-
Charges, but only approximately and at a high computational cost. They are for the case
where you have an equation in your physics book that you want to put in your game, and
you just want to type it in and be done with it.

The primary limitation of external fields is that they are not pushed or pulled by electric
or magnetic forces, as a real field-generating object would be. This is because they are not
infinitesimal sources— the total force on a field-generating object involves an integral over a
broad distribution of points, implemented in a computer as an expensive sum over many tiny
volumes. (For instance, one could calculate the energy in the magnetic field at all points in
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space and take derivatives to find the forces.) The purpose of Magnetodynamics is to avoid
heavy calculations like this that would slow down a game.

Since external fields excel at describing distributed shapes and because forces are not
automatically applied to them, they are most likely to be useful as massive, unmoving
field-generators in your Scene. However, they can be moved, and if they are attached to a
Rigidbody, you can apply forces to them. If you’re working within a special case and you
know what force to apply without having to do expensive calculations, you could apply that
force yourself.

ExternalFieldSolenoid describes a magnetic field configuration that is used often in sci-
ence and engineering. A solenoid is a cylindrical coil of wire carrying an electric current in
a spiral around the core of the cylinder. The magnetic field due to the flowing electrons in
the wire adds up and cancels in just the right way to produce an almost constant magnetic
field inside the cylinder and almost no magnetic field outside. For an infinitely long solenoid,
this is exact. ExternalFieldSolenoid implements a finite-length solenoid. (It’s surprisingly
complicated: take a look inside ExternalFieldSolenoidScript!)

The strength parameter of ExternalFieldSolenoid includes the number of windings. If
you want to represent the field due to a wire wrapped twice as many times around a cylinder
(even though it’s the same wire and the same current going around and around), double the
strength.

Solenoids illustrate an important fact about magnetic forces on dipoles and induced
dipoles in magnetizable materials. The force on a dipole depends on the derivative of the
magnetic field (Eqn 3), so the nearly constant field (nearly zero derivative) in the middle of
a solenoid applies very little force, though it can apply a huge torque (Eqn 2). The only part
of the solenoid that has large field derivatives is the so-called “fringe field” near the openings.
You can see this in the TabletopExperiments demo (Fig 2) if you drag a bar magnet up to
the mouth of the solenoid. If the bar magnet is pointing the right way, the solenoid gobbles
it in, but doesn’t fling it through to the other side. Once inside, it stops. (If it’s pointing
the wrong way, the solenoid will happily right it for you.)

This means that you can levitate bar magnets in an upward-pointing solenoid, but not
in the middle where the field is constant, only at the opening. If the magnets fall below this
“sweet spot,” they’ll fall out of the trap.

2.6.3 Tutorial project: Beam through Solenoid

Big solenoids are often used in particle physics because the magnetic field curves the trajec-
tory of the particles, and since it’s a nearly constant field, the radius of bending is directly
related to the momentum (or speed) of the particles. Thus, we can measure momenta of
particles that are too fast to track with a timer by looking at the shape of its trajectory.

Open and run the SolenoidTutorial Scene. The wire and toilet paper roll solenoid from
TabletopExperiments is close to the camera, filling much of the view (Fig 15). The hand-
held accelerator is in the distance, shooting particles through the solenoid, but not perfectly
down the center. The particles spiral while they’re in the solenoid, and the tightness of the
spiral depends on the strength of the magnetic field. In the “fringe field” region just outside
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the openings, the spiral has a wide radius. In the center, where the field is stronger, the
spiral is tighter.

Figure 15: Down the barrel of a solenoid.

While the demo is running, you can
rotate the camera’s view by dragging the
mouse across the screen. I didn’t include
any in-game handles to move the solenoid,
but you can move it in the Scene view. The
field will move along with the GameObject
in real time.

If you’re feeling ambitious, try turn-
ing the ExternalFieldSolenoid upright and
adding a bar magnet. If the bar magnet has
a small enough mass and a strong enough
field, it should levitate.

2.7 FieldLine (requires Vectrosity)

2.7.1 Reference

FieldLines help you to visualize the electric and magnetic fields by tracing a curve that is
always parallel with the field vectors. They won’t work without the Vectrosity package, which
can be obtained on the Asset Store (http://starscenesoftware.com/vectrosity.html).
They also won’t work unless they are explicitly activated: open

Magnetodynamics/ObjectsToPlaceInYourScene/ ScriptsThatMakeThemWork/FieldLineScript.cs

and remove the ‘//’ before ‘#define I HAVE VECTROSITY’ (the first line in the file). If you
don’t do this, FieldLines in your scene will raise exceptions at start-up. If you want to have
FieldLines in your Scene but don’t want to see these messages, add a ‘//’ before ‘#define
SHOW VECTROSITY ERRORS’. You need to do this each time you import Magnetodynamics into
a new project.

The position of a FieldLine GameObject represents the starting point of the curve. Its
direction is not relevant because the direction is entirely determined by the field vectors.
FieldLines change with the field in real time, can apply to electric or magnetic fields, and
the algorithm that follows the field is highly configurable. The parameters are:

Name Type Default Description
electromagnetic-

FieldController

Game-

Object

null pointer to the scene’s Electromagnet-
icFieldController; only needed if you
changed its name

onlyCalculateOnce bool false if true, only calculate the field line
once (fields are static)
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Name Type Default Description
whichField enum Magnetic if Electric, follow electric field lines;

if Magnetic, follow magnetic field lines
numberOfSegments int 32 maximum number of line segments
segmentLength float 0.1 length of a line segment; if negative,

follow the field backward
accuracy enum SecondOrder-

Method

if EulersMethod is fast but inaccurate,
SecondOrderMethod is in between, and
RungaKuttaMethod is slow but good

backTolerance float 0.75 stop computing the curve if the co-
sine of the angle between two segments
is less than backTolerance (less than
0.75 is larger than 41.4◦ angles; keeps
a line from becoming jagged near zero
field); to disable, set to -1

stopTolerance float 0.95 stop computing the curve if two
points are within stopTolerance

times segmentLength of each other
(avoids looping); to disable (it costs
O(numberOfSegments2)), set to -1

lineMaterial Material null material for rendering the line
color Color green color of the line
thickness float 8.0 thickness of the line (a material with a

fuzzy edge makes the actual thickness
somewhat less than thickness)

2.7.2 Discussion

A FieldLine effectively solves a differential equation in real-time, once per FixedUpdate. It
can therefore be an expensive algorithm, which is why it has so many parameters— you can
tune it to balance speed and accuracy. The calculateOnlyOnce parameter should be used
if you know that your fields and FieldLine starting points are unchanging, so that processing
time is not wasted by re-calculating the same lines over and over.

The length of the line is numberOfSegments times the absolute value of segmentLength
unless the algorithm gave up because of backTolerance or stopTolerance. Segments are
straight, so if you want a smoother line, you’ll need a higher numberOfSegments.

Errors accumulate along the line: if it gets a little bit off at the beginning of its run, it can
be very far off at the end. The accuracy parameter lets you choose an algorithm to reduce
these errors. The EulersMethod is first-order, meaning that errors are O(segmentLength)
and the field is calculated numberOfSegments times. The SecondOrderMethod has
O(segmentLength2) errors (much smaller) and the field is calculated 2 × numberOfSegments

times. The RungaKuttaMethod is fourth-order: errors are O(segmentLength4) and the field
is calculated 4 × numberOfSegments times.
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If patches of zero field are encountered, the FieldLine continues in a straight line across
the patch without changing in length. If the direction changes abruptly, the line stops.
Numerical error associated with large cancellations (close to the surface of a superconductor,
for instance) and singularities (close to a MagneticDipole or StaticCharge, for instance) cause
abrupt changes in direction. The backTolerance is intended to identify this situation: it
is a limit on the dot product of two neighboring segments— that is, the cosine of the angle
between the two segments. If the cosine is larger than backTolerance, the line will stop.
The default backTolerance corresponds to a maximum angle of 41.4◦. To deactivate this
check, set it to −1.

Correctly calculated magnetic field lines are complete loops, returning to the point where
they started (though they may need to be infinitely long to do so). In a numerical calculation,
this can lead to overlapping lines: the FieldLine makes a full orbit and then continues where
it started. But the accumulation of error makes this inexact and we get two very close lines,
which doesn’t look good. The stopTolerance is intended to identify a full loop and cut it
off. If a FieldLine reaches a point that is within stopTolerance times the absolute value of
segmentLength of a point it has been before, it will stop. To do this check, the algorithm
has to compute (at most) numberOfSegments times numberOfSegments - 1 distances, which
can be expensive if numberOfSegments is large.

The lineMaterial, color, and thickness are parameters passed to Vectrosity for draw-
ing. Lines are rendered with with Vectrosity’s 3-D method, so they can be hidden behind
objects or partly inside of objects.

A good strategy for setting up field lines is to evenly space the starting points with half of
them growing in the positive direction (positive segmentLength) and the other half growing
in the negative direction (negative segmentLength). The tutorial shows how to set this up.

2.7.3 Tutorial project: Geomagnetism

Figure 16: Field lines through the Earth.

Open and run the GeomagnetismTutorial
Scene. It contains a sphere painted like the
Earth, rotating with a nice tilt. In the cen-
ter of the sphere is a MagneticDipole, but
you wouldn’t know it because there’s noth-
ing around to be affected by its field.

Drag a FieldLine into the Scene and run
it again. If the FieldLine is close enough
to the Earth to feel its field, it will follow
the curve. You can move the position of
the FieldLine in the Scene view while the
game is running to see how its path depends
on starting point. (It could be useful to ar-
range your Scene and Game views side-by-
side, since FieldLines don’t show up at all angles in the Scene view.)

You can attach the FieldLines to the Earth so that they rotate with it by nesting them
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in the Hierarchy view (just as you might do with a MagneticDipole). Put the FieldLine into
the Earth (which is inside Tilt) and make five copies of it (a total of six FieldLines). Try to
arrange the positions uniformly by hand, or use the local positions tabulated below.

segmentLength x y z
0.1 0. 0.33 0.2
0.1 0.173 0.33 −0.1
0.1 −0.173 0.33 −0.1
−0.1 0.173 −0.33 0.1
−0.1 0. −0.33 −0.2
−0.1 −0.173 −0.33 0.1

This configuration is an equilateral triangle near the Earth’s north pole and another
equilateral triangle, rotated by 60 degrees, near the Earth’s south pole. If you don’t set
the segmentLengths (that is, if they’re all positive), the FieldLines from the southern tri-
angle will try to go through the Earth and come out the top, but they’ll be get lost in the
MagneticDipole singularity. It’s always best to start lines going away from the nearest Mag-
neticDipole (or StaticCharge for whichField = Electric). It’s also nice to have as many
backward-going lines as forward-going lines so that the numerical errors in the curves are
symmetric and the user is less likely to notice them.

Now when you run it, it should look like Fig. 16. The real magnetic field in the Earth
doesn’t point exactly north, so try tilting the MagneticDipole a little bit. Five to ten degrees
makes a big difference in the lines (unless you tilt the lines by the same amount, which would
be another reasonable thing to do). If the FieldLines are no longer closed, make them longer
by extending segmentLength or adding more numberOfSegments. (They don’t have to be
powers of two; that’s just what I chose for defaults.)

2.8 PlasmaStream and PlasmaIonizedGas

2.8.1 Reference

Magnetodynamics can simulate low-density plasmas that are affected by electric and mag-
netic fields but do not produce their own fields (which would be computationally expensive).
They are modifications of Unity’s ParticleSystem to respond to fields through the Lorentz
force.

A prefabricated ParticleSystem with an associated script, PlasmaIonizedGas, has been
provided. You may want to make a lot of modifications to this ParticleSystem so that it
fits your artistic vision— if you already have a ParticleSystem that you like, just attach the
PlasmaIonizedGas script to it directly.

There are two configuration parameters that you must check when you add the script.
The ParticleSystem’s simulationSpace must be World, not Local, and the ParticleSystem’s
maxParticles must be equal to the PlasmaIonizedGas maxParticles. The ParticleSystem
takes up a lot of space in the Inspector, especially with its Particle System Curves window,
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so you may need to scroll down to see the PlasmaIonizedGas parameters. Here are the
parameters’ definitions:

Name Type Default Description
electromagnetic-

FieldController

Game-

Object

null pointer to the scene’s Electromagnet-
icFieldController; only needed if you
changed its name

chargeOverMass float 1000.0 charge-over-mass in Coulombs per kilo-
gram (C/kg) of the Particles

maxParticles int 256 number of Particles to expect in the
ParticleSystem

2.8.2 Discussion

A plasma is a state of matter like a gas, but in which some or all of the particles are ionized
(charged). They could be fundamental particles like electrons or they could be atoms that
are missing one or more electron. Dense plasmas are notoriously hard to simulate (often for
nuclear fusion research) because they can interact with themselves. They generate their own
electric fields by virtue of being charged and generate magnetic fields when those charges
move at high speeds. The shape of the plasma blob is affected by those new fields, which
generate more fields, etc.

To avoid that complexity, PlasmaIonizedGas does not generate any fields, it only reacts
to them. To emphasize this lack of self-interaction, I’ve included ”ionized gas” in its name.
(Ideal gasses do not interact with themselves at all.) All of the Particles in the ParticleSystem

are accelerated by the Lorentz force ~FL

~FL

m
=

q

m

(
~E(~x) + ~v × ~B(~x)

)
(10)

where m is a Particle’s mass, q is its charge (so the chargeOverMass parameter is q/m in

Coulombs per kilogram, C/kg), ~v is its velocity, ~E(~x) is the electric field at the Particle’s

position, and ~B(~x) is the magnetic field at the same position. This causes Particles to fall
in the direction of electric field lines and spiral around magnetic field lines.

The number of particles in a typical ParticleSystem (hundreds) is in no way realistic—
generally, the ParticleSystem is intended as a visual representation of more particles than
the game system can actually track. Artistically, it’s a good idea to make the Particle size
larger than the typical spacing so that it’s easier to believe that the blob is a cloud, rather
than fairies.

The maxParticles parameter is needed to allocate an array in which the Particles are
stored while they’re being operated on. The wrong value could lead to index errors.

The force parameters in Unity’s ParticleSystem (such as Force Over Lifetime, etc.) won’t
work because PlasmaIonizedGas completely takes control of the Particle’s velocities. The
other parameters (color, size, etc.) still work.

Particles should orbit around a strong StaticCharge (see the VanDeGraaffExample Scene)
and they should circulate in a constant magnetic field, such as the field in a solenoid (see
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Figure 17: Antimatter (white) caught in a Penning trap. Electric field lines are blue,
magnetic field lines are green. You’re looking at a side view of the apparatus, cut in half
(the mouse allows you to rotate).

the SolenoidTutorial or the tutorial project below), but long-lived Particles and strong fields
can accumulate numerical errors and fly away. This sort of problem was solved by damping
with air resistance in the SuperconductorTutorial, but air resistance doesn’t make sense for
ions and electrons. (Maybe someday I’ll implement bremsstrahlung.) For ParticleSystems,
you can reduce the Particle’s lifetime so that the error-tainted Particles are replenished by
fresh Particles. If the Particles’ size is larger than their typical separations, the Particle-
replacement is hard to notice. Reducing the field strengths or chargeOverMass also works,
though it also weakens the effect, which might not be desired.

To use the same terminology as in the FieldLine implementation, the Particles’ trajecto-
ries are differential equations solved by Euler’s Method. The equivalent of a segmentLength

is the distance that a Particle travels in one time-step.

2.8.3 Tutorial project: Antimatter in a Penning Trap

Open and run the PenningTrapTutorial. Penning traps are devices used to store charged
particles without letting them touch the walls. They are often used to hold batches of charged
antimatter, such as antiprotons and positrons, for experiments. The electric and magnetic
fields are already set up, but the ParticleSystem ignores them because it hasn’t been declared
as a plasma yet. Drag a PlasmaIonizedGas script into the Antimatter object and set the
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chargeOverMass to 1000 C/kg. Now when you re-run it, the Particles are trapped (Fig 17).
Note that Unity provides a preview of what the ParticleSystem would look like before you
actually run it— this preview doesn’t include the electromagnetic forces because the script
isn’t active. When the game is running, rotate the camera angle by dragging across the
screen with the mouse.

The Penning trap requires both electric and magnetic fields to work. The electric field is
produced by a hyperboloid-shaped tube and two hyperboloid endcaps held at high voltage
(the endcaps have the same charge as the particles, the barrel has the opposite charge). The
blue FieldLines indicate the direction of the electric field due to these plates (see how the
blue lines touch the metal surfaces at right angles?). Particles want to follow these lines,
away from the endcaps and toward the sides of the tube: in other words, inward horizontally
and away from the center vertically. The magnetic field is produced by a solenoid, indicated
by green lines. Particles want to circulate around the magnetic field lines, which opposes the
outward force of the electric field. Without the magnetic field, they’d be squeezed out the
middle, and without the electric field, they’d spiral out of the ends. Look at the antimatter
blob from an angle to see how it squeezes flat and spirals around like a galaxy.

Select the ExternalFieldSolenoid and uncheck its ExternalFieldSolenoidScript to see what
would happen without a magnetic field. Then reinstate it, select the ExternalFieldElec-
tricQuadrupole and uncheck its ExternalFieldElectricQuadrupoleScript to see what would
happen with a magnetic field but no electric field.

To see the effects of numerical error, try doubling the PlasmaIonizedGas chargeOverMass
(to 2000 C/kg). This makes the effect stronger, so at first the blob is squeezed faster and
tighter, but it pretty quickly spins out of control. At these higher velocities, the Particles
are taking larger distance steps in each time-step, and the errors in Euler’s Method grow
linearly with this step size. You can compensate this by halving the Particle lifetime (in the
ParticleSystem’s controls: change the startLifetime from 10 to 5).
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3 Scripting Reference

For all the uses described above, you don’t need to write any code. However, maybe you
want to.

Though Unityscript (Unity’s “Javascript”) may be easier to write, it is easier to set up C#
scripts. Unityscript has trouble finding the ElectromagneticFieldControllerScript definition,
even when you configure a Script Execution Order (under Edit → Project Settings). If
you’re going to use Unityscript, I recommend moving the whole Magnetodynamics folder
into a top-level folder called “Standard Assets” (must be done in every project that you
import Magnetodynamics into). If you’re using C#, you don’t need to do this.

3.1 How to access the magnetic and electric fields

To access field values, you need to call to the ElectromagneticFieldControllerScript. First,
make a reference to it in your Start() function.

(C#)private ElectromagneticFieldControllerScript controller;

void Start() {

GameObject efc;

efc = GameObject.Find("ElectromagneticFieldController");

controller = efc.GetComponent<ElectromagneticFieldControllerScript>();

}

(Unityscript)var controller : ElectromagneticFieldControllerScript;

function Start() {

var efc : GameObject;

efc = GameObject.Find("ElectromagneticFieldController");

controller = efc.GetComponent(ElectromagneticFieldControllerScript);

}

Now you can call ElectricField, MagneticField, and MagneticFieldDerivatives as
often as you like to get the field values or their derivatives in global (world) coordinates.
(The components of the vectors are global x, y, z and the derivatives are with respect to
global x, y, z.)

(C#)Vector3 pos = whatever;

Vector3 E = controller.ElectricField(pos);

Vector3 B = controller.MagneticField(pos);

Vector3 curlB;

Vector3 ddxB;

Vector3 ddyB;

Vector3 ddzB;

controller.MagneticFieldDerivatives(pos, out curlB, out ddxB, out ddyB, out ddzB);
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Unityscript requires additional parameters that are supposed to be hidden in the public API.
Use the values specified below (rigidbodyId = -1 and excludeSuperconductors = 0).

(Unityscript)var pos : Vector3 = whatever;

var E : Vector3 = controller.ElectricField(pos, -1, 0);

var B : Vector3 = controller.MagneticField(pos, -1, 0);

var curlB : Vector3;

var ddxB : Vector3;

var ddyB : Vector3;

var ddzB : Vector3;

controller.MagneticFieldDerivatives(pos, curlB, ddxB, ddyB, ddzB, -1, 0);

These fields include contributions from all StaticCharges, MagneticDipoles, external
fields, and superconductors. Since MagnetizableMaterials don’t create induced fields (they
just experience forces as though they had induced fields), there are no contributions from
them. The derivatives are 3-D vectors:

ddxB =
d

dx
~B, ddyB =

d

dy
~B, ddzB =

d

dz
~B (11)

and
curlB = ∇× ~B = ddyB.z− ddzB.y, ddzB.x− ddxB.z, ddxB.y− ddyB.x (12)

is calculated from ddxB, ddyB, and ddzB.

3.2 How to change field strengths through a script

You may want to use a script to change the strength of a field so that you can turn it on or
off in response to some action. Suppose that you have a MagneticDipole, a StaticCharge, a
GameObject with MagnetizableMaterial, or an ExternalFieldSolenoid named obj (not the
parent of one of these objects, but the object itself). You can change its strength with

(C#)obj.GetComponent<XXX>().strength = value;

(Unityscript)obj.GetComponent(XXX).strength = value;

where XXX is one of the types in the table below.

Type Default Units
MagneticDipoleScript 300.0 A·m2

StaticChargeScript 10−8 C
MagnetizableMaterial 10−14 χ/(1+χ) times volume
ExternalFieldSolenoidScript 1.0 A

ExternalFieldConstantScript has an electricField (V/m) and a magneticField (T)
that can be changed at run-time. Superconductors have no strength parameters be-
cause they just respond to the field around them. The PlasmaIonizedGas script has a
chargeOverMass (default: 1000 C/kg) and FieldLineScript has a segmentLength (de-
fault: 0.1 distance units) that can also be changed at run-time.
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3.3 Writing your own external field

You can add your own external field objects by writing a script that gives a field function
to the ElectromagneticFieldControllerScript. See above for how to access the Electromag-
neticFieldControllerScript or just make a copy of ExternalFieldTemplateScript. The field
functions

(C#)Vector3 ElectricField(Vector3 pos) { ... }

Vector3 MagneticField(Vector3 pos) { ... }

Vector3 MagneticFieldDx(Vector3 pos) { ... }

Vector3 MagneticFieldDy(Vector3 pos) { ... }

Vector3 MagneticFieldDz(Vector3 pos) { ... }

should return the electric field, magnetic field, or magnetic field derivatives in global coor-
dinates, given a point in global coordinates. Not all of them are required. If you want to
see field lines, implement ElectricField or MagneticField. If you want to apply a torque
on MagneticDipoles, implement MagneticField. If you want to apply a force on Magnet-
icDipoles, implement the derivatives. If you want to apply a force on MagnetizableMaterial,
implement the MagneticField and its derivatives. The derivative functions are always called
as a group: MagneticFieldDx, then MagneticFieldDy, then MagneticFieldDz, so you may
want to cache values in your class to avoid computing them three times.

Next, you need to pass your functions to the ElectromagneticFieldControllerScript so
that they will be used. Call

(C#)controller.RegisterElectricField(ElectricField);

controller.RegisterMagneticField(MagneticField);

controller.RegisterMagneticFieldDerivatives(MagneticFieldDx, MagneticFieldDy,

MagneticFieldDz);

in your Start() function or the first time it is needed. I have only tested this in C#.
Unless you know that there are no objects in your Scene that would call the field func-

tions many times per FixedUpdate(), avoid putting Debug.Log() messages in it. The high
rate of messages can lock up Unity so that you need to kill it (“Force Quit”), possibly
losing work. A single FieldLine or PlasmaIonizedGas can call field calculations dozens or
hundreds of times per FixedUpdate(). (It depends on FieldLine.numberOfSegments and
PlasmaIonizedGas.maxParticles.) A MagneticDipole, StaticCharge, or MagnetizedMate-
rial may only call it once, but if you have dozens or hundreds of these objects, the number
of calls will be large.

You can make your external field script depend on the position, orientation, and scale of
an associated GameObject to make it easier to configure. (Moving the GameObject would
move the field.) ExternalFieldConstant works this way (it is associated with a box), as
are ExternalFieldSolenoid (a cylindrical mesh), SuperconductorInfinitePlane (a plane), and
SuperconductorSmallSphere (a sphere). In these examples, the field functions first transform
the input point pos from global to local coordinates with transform.InverseTransformPoint(pos),
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work in the local frame, then transform the resulting magnetic field from local to global co-
ordinates with transform.TransformDirection(field).

Transforming derivatives is more complicated. If you calculate d
dx
~B, d

dy
~B, and d

dz
~B in

a local frame, then the components of the vector would be local and also the direction of
the derivatives would be local. That requires two transformations (equivalent to a single
similarity transform). Suppose you have ddxloc Bloc, ddyloc Bloc, and ddzloc Bloc (all
Vector3) with local components and local derivatives. You can use this method to convert
them:

(C#)// get the transformation matrix (Jacobian)

Vector3 right = transform.InverseTransformDirection(Vector3.right);

Vector3 up = transform.InverseTransformDirection(Vector3.up);

Vector3 forward = transform.InverseTransformDirection(Vector3.forward);

float dxloc_dxglob = right.x;

float dyloc_dxglob = right.y;

float dzloc_dxglob = right.z;

float dxloc_dyglob = up.x;

float dyloc_dyglob = up.y;

float dzloc_dyglob = up.z;

float dxloc_dzglob = forward.x;

float dyloc_dzglob = forward.y;

float dzloc_dzglob = forward.z;

// apply it to transform the derivatives

Vector3 ddxglob_Bloc = new Vector3(

dxloc_dxglob*ddxloc_Bloc.x + dyloc_dxglob*ddyloc_Bloc.x + dzloc_dxglob*ddzloc_Bloc.x,

dxloc_dxglob*ddxloc_Bloc.y + dyloc_dxglob*ddyloc_Bloc.y + dzloc_dxglob*ddzloc_Bloc.y,

dxloc_dxglob*ddxloc_Bloc.z + dyloc_dxglob*ddyloc_Bloc.z + dzloc_dxglob*ddzloc_Bloc.z);

Vector3 ddyglob_Bloc = new Vector3(

dxloc_dyglob*ddxloc_Bloc.x + dyloc_dyglob*ddyloc_Bloc.x + dzloc_dyglob*ddzloc_Bloc.x,

dxloc_dyglob*ddxloc_Bloc.y + dyloc_dyglob*ddyloc_Bloc.y + dzloc_dyglob*ddzloc_Bloc.y,

dxloc_dyglob*ddxloc_Bloc.z + dyloc_dyglob*ddyloc_Bloc.z + dzloc_dyglob*ddzloc_Bloc.z);

Vector3 ddzglob_Bloc = new Vector3(

dxloc_dzglob*ddxloc_Bloc.x + dyloc_dzglob*ddyloc_Bloc.x + dzloc_dzglob*ddzloc_Bloc.x,

dxloc_dzglob*ddxloc_Bloc.y + dyloc_dzglob*ddyloc_Bloc.y + dzloc_dzglob*ddzloc_Bloc.y,

dxloc_dzglob*ddxloc_Bloc.z + dyloc_dzglob*ddyloc_Bloc.z + dzloc_dzglob*ddzloc_Bloc.z);

// also transform the field vector components

ddx_B = transform.TransformDirection(ddxglob_Bloc);

ddy_B = transform.TransformDirection(ddyglob_Bloc);

ddz_B = transform.TransformDirection(ddzglob_Bloc);
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A How the code is organized

The equations for magnetic forces and fields are just copied from textbooks, but some organi-
zation is needed to apply them appropriately. Unity’s scripting environment is decentralized,
but every magnetic component needs to know about every other magnetic component to com-
pute the total field and thus the force. The ElectromagneticFieldController coordinates all of
that traffic— everybody reports their positions or fields to the controller and the controller
applies forces and torques on everybody.

The controller also needs to keep track of which MagneticDipoles and StaticCharges are
in the same Rigidbodies so that Rigidbodies do not apply forces on themselves. (See the
discussion section on MagneticDipoles). The primary data structure is therefore a Dictio-
nary of Dictionaries: the first Dictionary maps rigidbodyIds to a Dictionary that maps
magneticDipoleIds to dipole positions and moment vectors (~m). All of these ids are
unique integers (even MagneticDipoles in different Rigidbodies have distinct identifiers).
This data structure mirrors the loop structure: the outer loop over Rigidbodies contains
an inner loop over MagneticDipoles. This whole structure is repeated for StaticCharges.
The AssignMagneticDipoleId() and AssignStaticChargeId() functions add dipoles and
charges to the Dictionaries and return an id number so that the MagneticDipoles and Stat-
icCharges know who they are.

Since the dipoles and charges are stored in Dictionaries, you can delete them at run-time.
The controller also needs to keep track of the Rigidbodies that contain dipoles and charges,
which it keeps in a List with list indices equal to the rigidbodyIds. You shouldn’t delete
these Rigidbodies at run-time because the List indices would get out of sync.

External fields are registered with the controller using RegisterElectricField(),
RegisterMagneticField(), and RegisterMagneticFieldDerivatives(), as you have seen
above. These take functions as arguments, stored in Lists, and executed in order with
each request for the total magnetic field. There’s also a superconductor version of these
functions, since superconductors need to know about the total magnetic field except for
other superconductors to calculate images. Superconductor images are added one at a time
by recursively calling MagneticField() and its derivatives with excludeSupercondutors

increasing until there are no more superconductors in the list.
Other than that, everything else is a special case. The comments in the code should help

you to understand what’s going on.
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B What to do when something goes wrong

B.1 Nothing moves (no perceptible magnetic/electric forces)

• If there’s an error in the console saying, “Could not find ElectromagneticFieldCon-
troller,” you need to add an ElectromagneticFieldController to your Scene. (There
must be one in every Scene.)

• Are the strength parameters of both actors strong enough? Try raising them one
order of magnitude (factor of 10) at a time.

• The Rigidbody might be blocked. Are any of the Freeze Position or Freeze Rotation
constraints checked? Does the object respond to other forces, when applied?

• Is the MagneticDipole or StaticCharge complaining that it “must be a child of a
GameObject,” “must be a child of a GameObject that has a Rigidbody component,” or
“can only be embedded in objects with a BoxCollider, SphereCollider, CapsuleCollider,
or a MeshCollider” in the console?

B.2 Magnetic/magnetizable objects explode or roll violently

• The MagneticDipoles may not be buried deep enough within the Collider. If something
is allowed to get close to the MagneticDipole, the forces will be huge.

• The Collider might not be keeping the objects apart. MeshColliders can sometimes be
bypassed by sufficiently fast objects, especially if the mesh is not air-tight. Try adding
a BoxCollider or SphereCollider to reinforce the MeshCollider for high-speed impacts.

B.3 The dynamics looks right at first, but then goes crazy

• It could be the accumulation of numerical error. Try adding friction or drag (dynamic
friction in the Collider’s Physic material, the friction in the Collider it’s touching, or
the Rigidbody’s drag and angularDrag).

• If it’s a ParticleSystem (plasma), there is no friction to combat numerical error, but you
can reduce the lifetime of Particles (ParticleSystem’s startLifetime) or the strength
of the forces (PlasmaIonizedGas’s chargeOverMass).

B.4 Field lines do not appear/unwanted errors about FieldLines

• Have you uncommented I HAVE VECTROSITY or commented out SHOW VECTROSITY ERRORS?
See the FieldLine reference about how to do this. (It must be done in every project
that Magnetodynamics has been imported into. Also remember that it won’t work
without Vectrosity.)
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• Is segmentLength too short for the scale of your Scene? (Or is numberOfSegments too
small?)

• Is the FieldLine located in a position that would have it grow into an opaque object?
Magnetic field lines grow in the north direction (toward south poles) and electric field
lines grow in the positive direction (toward negative charges).

• Is the FieldLine located in a position that would have it grow into a singularity (Mag-
neticDipole or StaticCharge)?

• Is the FieldLine in a patch of zero or very low field? Try increasing the strength of
sources.

B.5 ParticleSystem becomes invisible when the game is running

• The chargeOverMass could be too high. Try reducing it one order of magnitude (factor
of 10) at a time.

B.6 OverrideColliderPoof isn’t expanding trigger-collider

• Are there multiple MagneticDipoles/StaticCharges in the Rigidbody? Only one of
them controls the poofing of the Collider, so set the overrideColliderPoof of all of
them.
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