Alignment of the CMS muon system with tracks

Jim Pivarski

Texas A&M University

on behalf of the CMS Collaboration

30 July, 2009
Outline

▶ Motivation for muon alignment
▶ Quick overview of the CMS muon system
▶ Alignment strategies
▶ Endcap results with 2008 LHC beam-halo
▶ Barrel results with CRAFT cosmic rays
Example physics case

$Z' \rightarrow \mu\mu$ peak significance depends on resolution, and hence alignment

Importance of muon alignment (blue) increases with muon energy
CMS muon system

- Tracking in modular chambers: 6 to 12 layers each
- Global track formed from chambers’ segments and the silicon tracker

- Barrel (drift tube) chambers grouped into 4 radial stations, 5 longitudinal wheels
- Endcap (cathode strip) chambers grouped into 8 rings per endcap

- This talk will be about aligning the individual chambers
- Target for alignment is scale of $r\phi$ hit resolutions: $\mathcal{O}(100–300 \, \mu m)$
Alignment Strategy

- **Consideration:** Tracks measured with high precision in the silicon tracker, then pass through thick layers of iron (solenoid return yoke)
 - resolution of global tracks is dominated by tracker data (for $p_T \lesssim 200$ GeV in barrel, $p_T \lesssim 500$ GeV in endcap)
 - scattering in iron can be confused for misalignment with a single track, but scattering is random; misalignment is systematic

- **Strategy:** fit tracks to the tracker only, then propagate to the muon system
 - misalignment given by the *peak* of the residuals distribution (residual = track − hit)
 - control for propagation effects: material budget, $\vec{B}(\vec{x})$, etc. have different dependencies on momentum and charge
Alignment Strategy

- **Consideration:** no obstacles to track-fits inside the chambers
 - gas volume with negligible scattering
 - low magnetic field: field lines follow iron yoke between chambers

- **Strategy:** combine residuals into a 2-D position difference and a 2-D angle difference (4-component “residuals”)

- more highly constrained than traditional approach
- compute 6 rigid-body degrees of freedom (3 translations and 3 rotations) from inversion of 6×4 matrix, rather than 6×2
Sample fits: Monte Carlo

Projection of fits (all parameters = 0 other than the one shown) overlaid on simulated data for one chamber

Method works well in Monte Carlo
Sample fits: real cosmic rays

projection of fits (all parameters = 0 other than the one shown) overlaid on real data for the same chamber

- Largely the same behavior in data; studying small discrepancies
Monte Carlo accuracy

- Plot aligned-minus-true value of each of the 6 parameters for every chamber (histogram entries are chambers)
 - achieved 100–300 μm goal in $r\phi$ (local x coordinate: top-left)
 - systematics-dominated event sample

Note: this is a study of the muon alignment only, given a perfectly-aligned silicon tracker for input tracks.
Alignment Strategy

- **Consideration:** Complimentary information available from global and local track propagations
 - propagation from the silicon tracker conveys information about the global CMS coordinate system
 - propagation from one chamber to its neighbor is less susceptible to scattering
 - partially-independent datasets from the same muons!

- **Strategy:** Develop alignment methods for both and cross-check
 - in the endcap, Cathode Strip Chambers (CSCs) overlap along their edges
 - propagate relative alignment information through all overlapping CSC pairs
 - provides a complete alignment within a consistent local coordinate system
Alignment from CSC Overlaps

- Align a ring of CSCs with only local tracks by solving a system of 18 or 36 equations (for 18, 36 chambers per ring)
- Apply to 3 degrees of freedom

Monte Carlo accuracy (statistics limited, similar sample size as data)
Captured a total of 12 minutes of LHC muons, Sept 10–19, 2008

Enough to align CSC rings closest to the beamline (33,000 events in overlapping edges)

Local alignment cross-checked by photogrammetry: measurements from a literal photograph of the detector

Both methods observed (expected) differences with respect to the design geometry, with high correlation
2008 LHC beam-halo data

- Chamber-by-chamber comparisons with photogrammetry (PG):
 - agreement with $270 \, \mu m$ position and $0.35 \, \text{mrad}$ angular accuracy
 - for these chambers, intrinsic hit uncertainty is $166 \, \mu m$
 - statistics-limited: reach $\sigma_{\text{align}} \lesssim \sigma_{\text{hits}}$ with an hour of beam
CRAFT cosmic ray data

- Cosmic Rays At Four Tesla (CRAFT): 1 month of cosmic rays
 - all systems taking data concurrently: can align major subsystems relative to one another
 - solenoid at full field (3.8 T): can select high-momentum tracks

- Applied global alignment procedure to top and bottom of barrel (central 3 wheels, 10/12 sectors, due to vertical distribution of cosmic rays)

- Data and MC are both systematics-limited in most chambers
CRAFT cosmic ray data

- Cross-check of global alignment with local data
 - propagate chamber segments through only one layer of iron with aligned geometry, check for consistency
 - RMS of differences: 0.42 mm, 0.18 mrad for innermost chambers

![Graphs showing local X and Phi segment differences between consecutive chambers with RMS values.](attachment:graphs.png)
High-level test: split each cosmic ray into two LHC-like halves, fit top and bottom independently

- any mismatch in $1/p_T$ is purely instrumental
- select $p_T \gtrsim 200$ GeV to emphasize contribution of the muon alignment (long lever arm for resolution of small sagitta)

Before muon alignment

<table>
<thead>
<tr>
<th>Tracker-only:</th>
<th>mean</th>
<th>sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0040</td>
<td>0.044</td>
</tr>
<tr>
<td>With first muon station:</td>
<td>-0.0180</td>
<td>0.108</td>
</tr>
</tbody>
</table>

After muon alignment

<table>
<thead>
<tr>
<th>Tracker-only:</th>
<th>mean</th>
<th>sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0042</td>
<td>0.045</td>
</tr>
<tr>
<td>With first muon station:</td>
<td>-0.0097</td>
<td>0.045</td>
</tr>
</tbody>
</table>

Plot from Technical Design Report (no misalignment)

sigma ~ 0.025 at 200 GeV for a perfect detector
Conclusions

- Alignment strategy tailored to unique characteristics of the CMS muon system
- Procedures are well-understood in Monte Carlo, with reasonably good agreement with data
- Different methods based on global and local data for cross-checks
- Demonstrated excellent performance in beam-halo and cosmic rays: a good sign for alignment with first collisions!