Fundamental Particles and the Forces that Move Them

Jim Pivarski

14 July, 2010

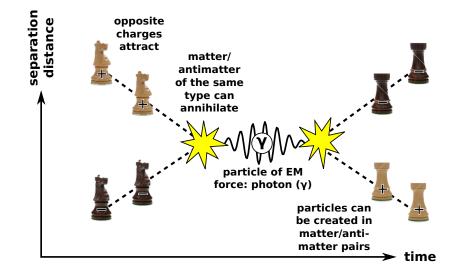
The basic idea: an analogy

- Studying particle physics is like trying to figure out the rules of the universe's chess game
- Other sciences study game-strategies using rules we already know
- But there's still more to learn about the basic rules

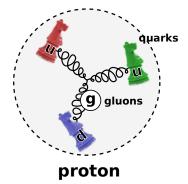
What do we know already? The particles:

charged leptons

neutrinos



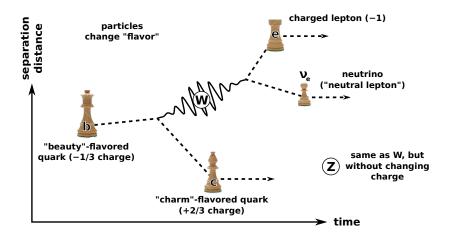
antimatter


The electromagnetic force:

The nuclear force:

different "colors" of quarks attract; bound quarks form composite particles

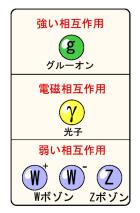
bound quarks can never be truly separated


attempting to do so requires so much energy

that you just end up making more quarks



The weak interaction:



Is this all? How did we get here?

The Standard Model of Particle Physics

力を伝える粒子

Timeline 1: everything settles into place

1830: Faraday's Law

Unification of electricity and magnetism

1860: Maxwell's Equations

Basic rules of the universe seemed to be understood: any new phenomena were explained in terms of electromagnetism

1900

Timeline 2: everything jumps out of place!

1902: Discovery of Radium

1900

1924: Intrinsic Spin

1934: Weak Interaction and the Neutrino

1900: Quantization of Energy

Discovery of radiation, quantum effects, nuclear force: there were surprises everywhere

Clearly, we had more to learn about the basic rules! 1939: Nuclear Fission

Timeline 3: everything starts settling again

1926: Quantum Mechanics

1920

Late 1940's: Quantum Field Theory and Quantum Electrodynamics

1950

10/22

1930's: Nuclear Models

Quantum theory describes electromagnetism very well... now, on to nuclear/weak forces!

Timeline 4: everything gets more complex

1950

1950's and 60's: Too Many "Fundamental" Particles

1974

11/22

1956: Parity Violation

1960's: Quantum Field Theory is Not Fundamental?

Nuclear and weak forces are very strange! Even quantum mechanics doesn't know what to do with them...

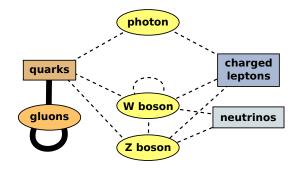
Timeline 5: it all makes sense again!

1974: Discovery of Charm Quark helps Standard Model to coalesce

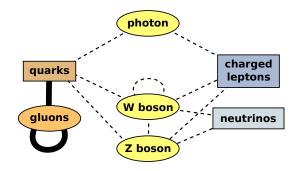
1974

1995: Discovery of Top Quark and many precision tests of the Standard Model

now

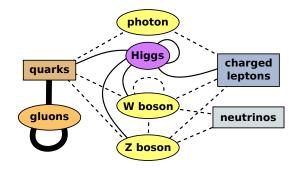

1983: Discovery of W and Z bosons; Standard Model is Confirmed

Standard Model is amazingly wellverified... but we know that it is incomplete


#1: The Standard Model *needs* a Higgs

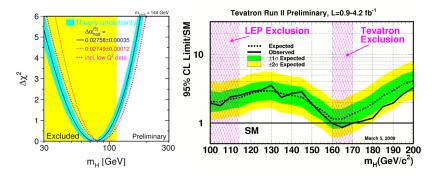
Couplings between particles (matter and forces):

#1: The Standard Model *needs* a Higgs


Couplings between particles (matter and forces):

- Force particles cannot have mass in the fundamental theory
- ▶ W and Z have very large masses, in apparent contradiction

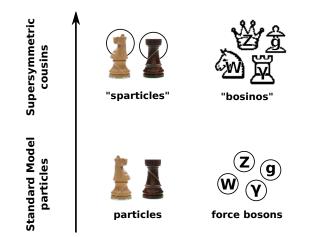
#1: The Standard Model *needs* a Higgs


Couplings between particles (matter and forces):

- Force particles cannot have mass in the fundamental theory
- ▶ W and Z have very large masses, in apparent contradiction
- Their masses can be dynamically generated by interacting with another field: the Higgs boson

But where is it?

- ► From *W*, *Z*, and top quark masses, best-fit Higgs mass should be 80 GeV
- Higgs mass below 114 GeV and between 160–170 GeV are ruled out by experiment
- The whole picture is possible, but increasingly unlikely as more possibilities are ruled out


#2: The Standard Model is unnatural

The Standard Model does not include quantum gravity

- somehow, it needs to fit into a larger theory that does (string theory?)
- The connection between the Standard Model and a fully unified theory is awkward:
 - no explanation why Higgs mass would be as light as it needs to be
 - doesn't properly unify electromagnetic, nuclear, and weak forces at high energy
- Very likely, there is another piece to the puzzle between the Standard Model and quantum gravity

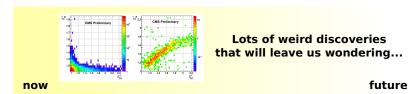
Supersymmetry

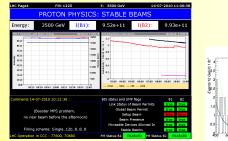
- Introducing a new relationship between matter particles and force particles solves both problems
- Also provides us with a lot more particles to discover!

#3: We know there's other stuff out there

Astronomers have determined the following composition of the universe from recent measurements:

- 0.03% of it is heavy elements (anything solid, like us)
- 0.3% neutrinos
- 0.5% stars
- ▶ 4% free-floating H, He gasses
- 25% some new kind of particle, not in the Standard Model ("dark matter")
- 70% something else, not even particle-like ("dark energy")


What to do about it: TeV-scale colliders!


From *Popular Mechanics*, 1978; immediately after the Standard Model was formulated and its implications realized



Hopefully, we'll soon be confused again

